"Biomass CHP – How To" – An Introduction

Dave Sjoding Northwest Clean Energy Application Center

Isaac Panzarella Southeast Clean Energy Application Center

IDEA's 26th Annual Campus Energy Conference San Diego, California February 21, 2013

What is Combined Heat and Power?

CHP is an *integrated energy system* that:

- Is located at or near a factory or building
- Generates electrical and/or mechanical power
- Recovers waste heat for
 - Heating
 - Cooling
 - Dehumidification
 - Process thermal needs
- Can utilize a variety of technologies and fuels

CHP Process Flow Diagram

CHP is a proven high-efficient alternative to separate power and thermal energy production

Overview

- Biomass feedstocks
- Different feedstocks require different CHP technologies
 - Woody biomass steam turbine generators and gasifiers
 - Anaerobic digestion biogas gensets, fuel cells
- Both CHP technology pathways use organic materials more efficiently than electricity generation alone
- Lessons learned from each technology pathway include environmental, economic development, emerging commercialization, and technology applications

Feedstock Perspectives

- Think creatively What is available locally and where does it go?
 - Clean urban wood waste
 - Food waste
 - Avoid organic materials going to the landfill Beyond Waste
- All biomass is local Transportation costs can kill a project.
 50-mile radius (rule of thumb maximum distance)
- Biomass feedstocks How reliable is the source? Price?
 Due diligence is needed for a long-term supply contract.
 Do a biomass availability assessment.

Feedstock Perspectives (continued)

- What if we lost the supply? How do we manage seasonal variation?
 Have alternatives.
- Feedstock competition is coming as bioenergy technology advances.
- What is the moisture content? It makes a difference in system design.
- What is the quality of the feedstock? Wood chips by hammermill or knife – avoid clogging of auger.

Environmental Considerations

- Think environmental concerns through <u>early and deeply</u> there are a wide variety of concerns.
 - Examples: The Evergreen State College and Thurston County
- Compared to what? This is a basis for showing improvements.
 - Example: Nippon Paper
- Air emissions biomass portion of boiler MACT
- Nutrient overloading of digestate liquid

Environmental Considerations (continued)

- Preserving soil health do not over-harvest the biomass
- Solid waste avoidance uses for the ash. What are the nutrients?
- Carbon footprint and greenhouse gas reductions
 - Biogenic carbon
- Water use and quality impacts
- Have very good factsheets to tell the story and lessons learned

Technology: What Makes a Great Project?

A great wood waste CHP/district energy project has:

- Proper sizing
- High energy efficiency
- Covered storage area for the feedstock
- Quality requirements for the feedstock
- Strong moisture reduction system
- Strong environmental controls and well-understood environmental improvements
- Effective heating and cooling

Fuel Drying – Why?

- Significantly improves the efficiency of the boiler or gasifier.
- For boiler:
 - 5% to 15% improvements in efficiency

(Boiler is not an efficient dryer, so dry fuel before it goes to the boiler.)

- 50% to 60% more steam production
- Improves combustion
- Reduces air emissions
- See Biomass Drying and Dewatering for Clean Heat & Power, 2008, available from <u>www.northwestcleanenergy.org</u> (documents→CHP technology)

Waste Heat Recovery for Drying Wood Waste

Heat recovery is key to a cost-effective dryer project.

- Recover flue gas of power boiler or gasifier
- Recover heat from other waste heat sources
- Recover heat from dryer exhaust

Design a complete CHP system, including:

- Feedstock drying
- Waste heat recovery

What Makes a Great Anaerobic Digestion CHP Project?

- Maximizes revenue streams
- Uses co-digestion: It can flip the economics positive
 Some co-digestion feedstocks are amazing producers of biogas
- Has a proper design for the climate zone and solids content of the feedstock – good emerging technology
- Scrubs the biogas major importance
- Strong O&M support

Anaerobic Digestion Economics

A moving target – maximize co-products

Dairy example – 10 potential revenue streams

- Power
- Green/renewable power adder (RECs)
- Carbon credit due to lagoon shutdown (methane reduction pathway)
- Digested fiber with proper pH balance and nutrients (peat moss alternative)
- Nitrogen fertilizer
- Phosphorous fertilizer
- Remaining liquid is excellent fertilizer
- Tipping fee for food processor waste
- Co-digestion increases biogas production
- Waste heat for greenhouses

U.S. DEPARTMENT OF ENERGY Clean Energy Application Centers

Biogas Scrubbing

Wide variety of biogas mixtures – methane content, chemicals and water:

- Siloxanes very hard on engines
 - Landfill gas and WWTF biogas
- Hydrogen sulfide can the sulfur be used elsewhere in the system?
- Know your biogas

Conclusion

- Economic advantage make your own power for on-site use or sell it/wheel it
- Long-term feedstock supply is crucial
- A long-term power purchase agreement is helpful
- Quality design is essential
- Use the feedstock efficiently
- BIOMASS CHP A WINNER!

Biomass/Biogas CHP Project Profiles

CEACs compile select CHP Project Profiles to inform and connect

U.S. DOF

National Database on DOE AMO site

http://www1.eere.energy.gov/manufactur ing/distributedenergy/chp_projects.html

Questions & Contact Information

Dave Sjoding Director Northwest Clean Energy Application Center <u>www.northwestcleanenergy.org</u> <u>sjodingd@energy.wsu.edu</u> 360-956-2004

Isaac Panzarella Director Southeast Clean Energy Application Center <u>www.southeastcleanenergy.org</u> <u>ipanzarella@southeastcleanenergy.org</u> 919-515-0354

DOE Clean Energy Application Centers: Locations, Contacts, and Web Sites

NORTHWEST www.northwestcleanenergy.org

Dave Sjoding Washington State University Tel: 360-956-2004 sjodingd@energy.wsu.edu

MIDWEST www.midwestcleanenergy.org

John Cuttica University of Illinois at Chicago Tel: 312-996-4382 cuttica@uic.edu

Cliff Haefke University of Illinois at Chicago Tel: 312-355-3476 chaefk1@uic.edu

GULF COAST

www.gulfcoastcleanenergy.org

Gavin Dillingham

Research Center

Tel: 281-364-4060

gdillingham@harc.edu

Houston Advanced

NORTHEAST www.northeastcleanenergy.org

Tom Bourgeois Pace University Tel: 914-422-4013 tbourgeois@law.pace.edu

Beka Kosanovic University of Massachusetts Amherst Tel: 413-545-0684 kosanovi@ecs.umass.edu

MID-ATLANTIC www.maceac.psu.edu

Jim Freihaut Pennsylvania State University Tel: 814-863-0083 jfreihaut@engr.psu.edu

SOUTHEAST www.southeastcleanenergy.org

Isaac Panzarella North Carolina State University Tel: 919-515-0354 ipanzarella@ncsu.edu

Pedro Mago Mississippi State University Tel: 662-325-6602 mago@me.msstate.edu

PACIFIC www.pacificcleanenergy.org

Tim Lipman University of California, Berkeley Tel: 510-642-4501

telipman@berkeley.edu

Vince McDonell University of California, Irvine Tel: 949-824-7302 x121 mcdonell@apep.uci.edu

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

www.districtenergy.org

Rob Thornton President Tel: 508-366-9339 rob.idea@districtenergy.org

DOE Clean Energy Application Centers: Program Contacts

INTERMOUNTAIN www.intermountaincleanenergy.org

Christine Brinker Southwest Energy Efficiency Project Tel: 720-939-8333 cbrinker@swenergy.org

Patti Case etc Group Tel: 801-278-1927 x 3 plcase@etcgrp.com

Katrina Pielli

Jo

Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Phone: 202-287-5850 E-mail: katrina.pielli@ee.doe.gov

Joe Renk

National Energy Technology Laboratory (NETL) U.S. Department of Energy Phone: 412-386-6406 E-mail: joseph.renk@netl.doe.gov Patti Garland Oak Ridge National Laboratory (ORNL) U.S. Department of Energy Phone: 202-586-3753 E-mail: patricia.garland@ee.doe.gov Ted Bronson DOE CEAC Coordinator Power Equipment Associates Phone: 630-248-8778 E-mail: tlbronsonpea@aol.com